История телескопа

Содержание

Первые телескопы и их создатели | Статьи на сайте Познавая Мир

История телескопа

Любознательному человеку, который желает стать астрономом-любителем, наверняка захочется узнать о том, кто придумал телескоп и как складывалась история этого удивительного инструмента. Сразу нужно сказать, что с изобретением телескопа связана целая плеяда имён мастеров и учёных — как известных, так и не пользующихся широкой популярностью.

Кто изобрёл телескоп первым: загадка эпохи Возрождения

Несмотря на многочисленные версии, никто до сих пор точно не может назвать имя изобретателя первого телескопа. История свидетельствует о том, что первые инструменты (если говорить точнее, примитивные подзорные трубы) появились в 16 веке.

Рис.1. Английский астроном Томас Диггес.

В каком году изобрели телескоп? Известно, что первые попытки рассмотреть звёздное небо были предприняты английским астрономом Томасом Диггесом ещё в 1450 году. Он пытался использовать для этих целей линзу и зеркало, но попытка успехом не увенчалась.

Рис.2. Итальянский художник Леонардо да Винчи.

Чуть позже великий итальянский художник Леонардо да Винчи изготовил первые чертежи линзового телескопа. Эта работа датируется 1509 годом. Дальше события разворачиваются ещё интереснее.

Известно, что в начале 17 века в Нидерландах жили два талантливых мастера, которые занимались изготовлением очков. Их звали Захария Янсен и Иоганн Липперсгей.

Янсен даже стал персонажем популярной истории о том, что местный герцог, вдохновлённый его подзорными трубами, даже заказал у него целую партию этих приспособлений для военных и моряков.

Рис.3. Голландский мастера немецкого происхождения Захария Янсен и Иоганн Липперсгей

Говорят, что Янсен и Липперсгей постоянно конкурировали друг с другом, но дать точную оценку того, кто из них был лучшим мастером, было непросто. Как бы там ни было, именно Липперсгей принял попытку запатентовать изобретение первой подзорной трубы, но поскольку она не была доведена до идеального рабочего состояния, его предложение было отклонено.

Галилей — знаток оптики и математики

Рис.4. Итальянский физик, астроном, математик Галилео Галилей

Итальянец Галилео Галилей, будучи отличным математиком, сумел применить на практике известные к тому времени законы оптики.

Ему удалось сделать то, что не получилось у его голландских предшественников, а именно: усовершенствовать подзорную трубу так, чтобы ею можно было пользоваться для серьёзных наблюдений за небесными объектами.

Конечно, первый телескоп Галилея тоже был далёк от совершенства. Увеличение он давал небольшое, а картинка получалась размытой, но для того времени это стало серьёзным прорывом в науке.

Рис.5. Первый телескоп Галилея

Телескоп Галилея, сделанный в 1609 году, представлял собой конструкцию, состоявшую из нескольких линз, заключённых в трубу из свинца.

Именно Галилея традиционно считают первым человеком, направившим в небо подзорную трубу, пригодную для астрономических исследований.

Галилей был несказанно удивлён и восхищён, обнаружив на Луне горы и кратеры, а в созвездии Плеяд — большое количество звёзд, ранее неизвестных астрономам.

Галилей был первым человеком, которому выпало счастье наблюдать за «лунами Юпитера» (его спутниками). Рассмотрев Венеру, учёный обнаружил, что она очень напоминает Землю и не является звездой, как люди думали раньше.

Интересно, что сам Галилей не употреблял в своём лексиконе слова «телескоп». Подзорную трубу он называл «окуляром». Слово «телескоп» впервые было применено к инструменту коллегой и современником Галилея, итальянским астрономом и математиком Демесиани. В переводе с греческого языка «телескоп» означает «смотрю вдаль».

От Кеплера до Ньютона: как совершенствовали телескоп

Рис.6. Математик, астроном Иоганн Кеплер

Усовершенствование линзового телескопа-рефрактора датируется 1610 годом, когда немецкий астроном Иоганн Кеплер впервые применил двояковыпуклые линзы для объектива и окуляра инструмента.

Именно по такому принципу и сейчас конструируют современные рефракторы, работа которых основана на преломлении световых лучей. В дальнейшем мастерам удалось создать более мощные трубы с увеличением объектов до 100 крат. При этом, фокусное расстояние телескопа составляло 40 метров.

В 1664 году астроном по фамилии Оз установил своеобразный рекорд, создав телескоп с длиной трубы 98 метров.

Рис.7. Английский математик, физик, астроном Исаак Ньютон

Проблему тяжёлых и громоздких телескопов удалось решить Исааку Ньютону, создателю первых зеркальных инструментов. Их основу составляли вогнутые металлические зеркала. Их работа основывалась на отражении (рефлексии) объектов. Отсюда и произошло название зеркального телескопа — рефлектор.

Рис.8 Первый телескоп рефлектор Исаака Ньютона

Первый рефлектор Ньютон построил в 1672 году, а его схему телескопостроители также применяют и по сей день.

Усовершенствованием ньютоновских рефлекторов занимался великий российский учёный М.В. Ломоносов, а Уильям Гершель построил один из выдающихся зеркальных инструментов, который в 19 веке считался одним из лучших.

Роль любительской астрономии в нашей жизни

Сейчас, когда человечество запускает в небо космические телескопы (такие, как, например «Хаббл» или «Кеплер»), небольшие любительские телескопы кому-то могут показаться устаревшими. На самом деле, это не так.

Именно любительская астрономия из века в век вдохновляла людей на первые шаги в изучении звёздного неба и стала отправной точкой для совершения множества полезных открытий, результатами которых человечество пользуется и сейчас.

Источник: https://poznavajamir.ru/information/stati-o-tovarah/teleskopy-info/pervye-teleskopy-i-ih-sozdateli/

История телескопа: от Галилея до наших дней

История телескопа

Недавно в российских магазинах появился в продаже телескоп ТАЛ-35 ‒ копия рефлектора, созданного Исааком Ньютоном в 1668 году. Изобретение, в свое время ставшее прорывом в астрономии, в точности воспроизвели специалисты холдинга «Швабе».

Телескоп «Швабе» не отличается от оригинала ничем, кроме улучшенного качества изображения. Интересно, что принципиальные схемы телескопов были открыты еще в XVII веке и применяются до сих пор. Об эволюции телескопов и первооткрывателях телескопостроения – в нашем материале.
   

У истоков астрономии

410 лет назад, в 1609 году, итальянец Галилео Галилей, впервые наблюдая через телескоп небесные тела, смог разглядеть кратеры на Луне, отдельные звезды Млечного Пути и спутники Юпитера. Свои наблюдения Галилей описал в книге «Звездный вестник», которая произвела фурор в научной среде. Этот момент считается одним из поворотных в становлении астрономии как науки о Вселенной.

Галилео Галилей демонстрирует свой телескоп в Венеции. Фреска Джузеппе Бертини

Первые зрительные трубы, изучая которые Галилей собрал свой телескоп, были изготовлены в 1607 году в Голландии. Но до этого еще в 1509 году Леонардо да Винчи в своих записях сделал чертежи простейшего линзового телескопа и предлагал смотреть через него на Луну. 

Устройство первых телескопов было достаточно простым. В трубе на расстоянии располагались две линзы: объектив − выпуклая линза с фокусным расстоянием в 10, 20 или 30 дюймов и окуляр – вогнутая рассеивающая линза. Недостатками такого устройства являлись малое поле зрения и слабая яркость картинки.

В 1611 году немецкий ученый Иоганн Кеплер предлагает свою конструкцию телескопа – с двумя собирающими линзами. Эта схема давала перевернутое изображение, но зато оно было более ярким, и при этом значительно расширялось поле зрения.

Первый телескоп по схеме Кеплера был сделан в 1613 году ученым-иезуитом Кристофом Шейнером.

Он же впервые использовал для наведения телескопа две взаимно перпендикулярные оси, одна из которых стоит под прямым углом к плоскости экватора, что помогало компенсировать вращение Земли при наблюдениях.
 

Рефлектор Ньютона и другие телескопы

Первый телескоп, собранный Галилеем, имел трехкратное увеличение. Позже ему удалось добиться 32-кратного приближения. В дальнейшем ученые поняли, что увеличение фокусного расстояния улучшает качество изображения и помогает избежать аберраций, или искажений. Размеры телескопов при этом стали достигать 100 метров.

Одним из существенных искажений, которые мешали работе пионеров астрономии, был хроматизм, когда изображение становилось нечетким и у него появлялись яркие цветные контуры. Чтобы избавиться от хроматических аберраций, англичанин Исаак Ньютон, экспериментировавший в 1660-е годы с оптикой, решает заменить выпуклую линзу на сферическое зеркало.

Для этого он добавляет в бронзу мышьяк и разрабатывает хорошо поддающийся шлифовке материал. Первый телескоп-рефлектор был построен Ньютоном в 1668 году. Длиной он был всего 15 см и диаметром 33 мм. Ученый смог добиться 40-кратного увеличения высокого качества.

Новый телескоп настолько понравился королю, что Ньютон был избран членом Королевского общества.

Оригинальный телескоп-рефлектор Исаака Ньютона. Фото Лондонского королевского общества

В 1672 году француз Лоран Кассегрен предложил двухзеркальную схему, где первое зеркало было параболическим, а в качестве второго рефлектора выступал выпуклый гиперболоид, располагающийся перед фокусом первого. Первый подобный телескоп был сделан в 1732 году. Таким образом, уже в конце XVII века были разработаны все основные схемы телескопов, которые совершенствовались в последующие годы.
 

Время гигантов

В середине XIX века появились первые фотографии, выполненные с помощью телескопов. В 1860-е годы произошло важное событие в мире астрономии – англичанин Уильям Хаггинс впервые использовал вместе с телескопом спектроскоп. Ученый исследовал спектры излучения звезд и доказал различия между галактиками и туманностями.

Если во второй половине XIX века моду задавали телескопы-рефракторы, то в XX веке лидерами стали зеркальные рефлекторы. И сегодня в большинстве телескопов используются зеркальные схемы.

Большой телескоп азимутальный. Руслан Зимняков/Flickr

В 1917 году в Калифорнии был построен зеркальный телескоп Хукера диаметром 100 дюймов (2,54 м), с помощью которого Эдвин Хаббл делал свои открытия. В 1948-м там же был запущен телескоп Хейла диаметром 5,15 м.

Он оставался самым крупным в мире до 1976 года, когда в СССР был открыт БТА (Большой телескоп азимутальный), установленный в Специальной астрофизической обсерватории на горе Семиродники около Нижнего Архыза. Это был первый телескоп с альт-азимутальной компьютеризованной монтировкой.

Основные работы по телескопу выполняли предприятия, входящие сегодня в холдинг «Швабе»: Лыткаринский завод оптического стекла и Государственный оптический институт им. С.И. Вавилова. По сей день зеркало БТА диаметром 605 см является самым большим по массе.

С каждым десятилетием сложность и размеры телескопов растут. Так, самый большой в мире телескоп с цельным зеркалом диаметром 10 м находится на Гавайских островах.

На Канарских островах есть еще более крупный Большой Канарский телескоп диаметром 10,4 м. Но его первичное зеркало не является цельным − оно собрано из 36 зеркальных шестиугольных сегментов.

Применение ячеистых зеркал стало новым шагом в развитии телескопов.
 

Реплика от «Швабе»

Сегодня ощутить себя астрономами далекого прошлого можно благодаря ученым из столицы Сибири. В 2008 году на Новосибирском приборостроительном заводе (НПЗ) холдинга «Швабе» воссоздали телескоп-рефлектор, созданный Исааком Ньютоном в 1668 году.

Первые экземпляры устройства выпустили как памятные сувениры для гостей Новосибирска, приехавших посмотреть на полное солнечное затмение, так называемое русское.

Но спрос оказался таким высоким, что телескопы продолжали выпускать по единичным заказам, а потом и вовсе решили запустить серийное производство – под названием ТАЛ-35.

Чертежи телескопа создавали практически с нуля – на основе архивной информации. Оптическая труба ТАЛ-35 состоит из двух частей: подвижной и основной. Монтировка (подвижная опора телескопа) представляет собой деревянный шар. В рефлекторе Ньютона зеркало повернуто к оптической оси под углом 45 градусов, поэтому наблюдение ведется не с торца телескопа, а в боковой части.

Реплика телескопа Ньютона.  «Швабе»

Детали телескопа Ньютона изготавливают на тех же линиях, где серийно производят линейку известных в мире телескопов ТАЛ. Единственное отличие копии от исторического оригинала – это качество изображения.

Если Ньютон использовал для отражения полированную бронзовую пластину, то реплику оснастили оптическим зеркалом, обработанным алюминием.

Таким образом, несмотря на сувенирное назначение, эти телескопы можно использовать и для наблюдений.

Астрономия – одна из важнейших наук, формирующих мировоззрение. Несколько лет назад она вернулась в обязательную школьную программу старших классов. Выпускаются новые учебники, в ЕГЭ добавляются астрономические вопросы.

Как отмечает генеральный директор НПЗ Василий Рассохин, в создании телескопа ТАЛ-35 новосибирцы руководствовались не только популярностью прибора как сувенира: «Мы уверены, что телескопы Ньютона станут первым шагом в большую науку для многих молодых людей». 

Источник: https://rostec.ru/news/istoriya-teleskopa-ot-galileya-do-nashikh-dney/

Телескопы

История телескопа

Телескоп — главный инструмент ученых-астрономов. Название «телескоп» происходит от греческих слов «теле» — «далеко» и «скопео» — «смотрю». Такое название предложил в 1611 г. греческий математик Иоаннис Димисианос. Телескоп — прибор, который собирает электромагнитное излучение (например, видимый свет) и позволяет наблюдать отдаленные объекты.

Старинный оптический телескоп позволил увидеть множество новых звезд

История телескопа насчитывает несколько столетий. Первые чертежи простого телескопа с линзами составил еще Леонардо да Винчи. Но только в 1608 г. голландец Ханс Липперсгей продемонстрировал в Гааге свой экземпляр подзорной трубы. Правда, в то время другие мастера тоже делали подобные приборы.

Однако превратил подзорную трубу в телескоп Галилео Галилей.

Он направил ее в небо и получил первые научные данные. Это произошло в 1609 г. Первая зрительная труба работы Галилея имела трехкратное увеличение, вторая — восьмикратное. Третий его телескоп давал уже 32-кратное увеличение.

Галилео Галилей (1564—1642) — великий итальянский астроном, физик, математик, механик и философ

Конструктивно телескоп представляет собой трубу, установленную на монтировке и снабженную осями для наведения на объект наблюдения. У визуального телескопа есть объектив и окуляр. Окуляр может заменяться фотопленкой или другим приемником излучения, и тогда телескоп превращается в астрограф.

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы, снабженные принимающей антенной и радиометром. Для увеличения разрешающей способности телескопов их объединяют в интерферометры, причем в единую сеть могут входить телескопы, находящиеся в разных областях земного шара.

Небольшие телескопы используют не только для наблюдения за звездами, но и для того, чтобы рассмотреть панорамы городов, море, другие пейзажи

Атмосфера неоднородна, и постоянные ветры искажают изображение. Еще одним недостатком в использовании земных телескопов является их низкое разрешение, ограниченное значением приблизительно в 1 угловую секунду.

Кроме того, атмосфера пропускает излучения только в оптическом, инфракрасном и радиодиапазонах. Но чем меньше длина волны, тем хуже восприятие, и наблюдения в ультрафиолетовом, рентгеновском и гамма-диапазонах возможны только в космосе.

Поэтому на околоземных орбитах сегодня работают спутники-обсерватории.

Современные телескопы

Современные оптические телескопы и другие приборы на их основе — спектрографы, солнечные телескопы, астрографы — изменились до неузнаваемости по сравнению с инструментами Галилея и Ньютона.

БТА (Большой Телескоп Альт-Азимутальный) — крупнейший в Евразии телескоп (Россия)

Зеркальные телескопы нового поколения имеют главные зеркала диаметром 8—10 м и способны самостоятельно устранять помехи, возникающие в атмосфере.

Рекордсмены среди этих гигантов по разрешающей способности — 10 метровые телескопы Кек I и Кек II (США), 9,2-метровый телескоп Хобби-Эберли и 8-метровые телескопы Джемини и Субару, телескоп VLT Европейской южной обсерватории, а также находящийся в стадии постройки Большой бинокулярный телескоп LBT в штате Аризона (США).

С помощью современных радиотелескопов можно принимать большинство видов космических излучений, которые возникают в результате различных процессов, происходящих в веществе Вселенной при определенных условиях.

Многие из них можно использовать не только в качестве «приемников», но и «передатчиков» мощных сигналов.

Посылая импульсы излучения, телескоп улавливает их отражение от небесных тел, что позволяет получать изображения поверхности планет, скрытых плотной атмосферой, и изучать глубины таких «газовых гигантов», как Сатурн и Юпитер.

Антенны радиотелескопов используются также для осуществления связи с космическими аппаратами, отправленными в странствия к границам Солнечной системы. С помощью радиотелескопов были открыты такие неизвестные в недалеком прошлом объекты, как нейтронные звезды, квазары, реликтовое излучение Вселенной.

Космическая рентгеновская обсерватория «Чандра» (США)

Еще более необычные инструменты познания — инфракрасные, ультрафиолетовые, рентгеновские и гамма-телескопы — настолько чувствительны и сложны, что просто не могут работать в земных условиях. Чтобы защитить их от «земных помех» и получить новую важную информацию о глубинах мироздания, эти приборы устанавливают на борту орбитальных астрономических обсерваторий-автоматов.

Большой Канарский телескоп

Крупнейшие астрономические обсерватории мира соревнуются между собой, создавая все более крупные инструменты и наращивая размеры их зеркал. Современный телескоп-рефлектор занимает целое здание, им управляет множество компьютеров.

Самый мощный телескоп в Евразии построен в России — он находится на Северном Кавказе близ станицы Зеленчукской. Диаметр его главного зеркала — 6 м. Зеркало имеет массу около 70 т, а процесс его изготовления занял более двух лет.

Но «королем» всех астрономических инструментов, расположенных на Земле, сегодня является Большой Канарский телескоп, построенный на Канарских островах по проекту ученых Мексики, Испании и США.

Его зеркало имеет диаметр 10,4 м, он способен различать в межзвездном пространстве объекты в миллиард раз более слабые, чем человеческий глаз.

Большой Канарский телескоп

Какие существуют телескопы

Известны следующие виды телескопов для различных диапазонов электромагнитного спектра:

  • оптические телескопы,
  • радиотелескопы,
  • рентгеновские телескопы,
  • гамма-телескопы,
  • нейтринные телескопы — детекторы нейтрино.

Радиотелескопы, объединенные в единую сеть

Классификация телескопов по оптической системе

  • линзовые (рефракторы, или диоптрические), где объективом является линза или система линз;
  • зеркальные (рефлекторы, или катаптрические), где объективом выступает вогнутое зеркало;
  • зеркально-линзовые (катадиоптрические), где объективом является сферическое главное зеркало, а линзы служат для компенсации его аберраций (погрешностей);
  • для наблюдений за Солнцем используются особые солнечные телескопы.

Космический телескоп «Хаббл» — автоматическая обсерватория на околоземной орбите, названная в честь астронома Эдвина Хаббла. Отсутствие атмосферы увеличивает разрешающую способность «Хаббла» в 7—10 раз по сравнению с подобным телескопом, располагаемым на Земле

«Спитцер» находился в космосе почти 6 лет

«Гершель» — космический телескоп, искусственный спутник Земли

Телескоп «Чандра» приступил к работе в 1999 году и функционирует по сей день

Источник: https://SiteKid.ru/astronomiya/teleskopy.html

История космических телескопов

История телескопа

Основоположники космонавтики, обосновывая в первой половине ХХ века необходимость выхода человечества во внеземное пространство, среди прочих практических целей называли развитие астрономии. Они писали: наблюдение небесных тел затруднено колебаниями атмосферы и непредсказуемой погодой, поэтому вынесение телескопов за пределы планеты позволит на порядки увеличить их «дальнозоркость».

Астроном в космосе (иллюстрация из книги Макса Валье «Полёт в мировое пространство»)

Идею космических обсерваторий выдвигали Константин Циолковский в статье «Свободное пространство» (1883), Герман Оберт в работе «Ракета в межпланетное пространство» (1923) и Макс Валье в книге «Полёт в мировое пространство» (1924). После этого астрономические наблюдения с околоземной орбиты стали часто описывать в научно-популярной литературе и фантастике: достаточно вспомнить роман Александра Беляева «Звезда КЭЦ» (1936).

Впрочем, первые попытки провести наблюдения на больших высотах предпринимались задолго до начала космических полётов.

Например, известно, что во время полного солнечного затмения 19 июня 1936 года московский астроном Пётр Куликовский поднялся на субстратостате, чтобы сфотографировать корону Солнца.

Для американской астрономии практическим шагом к орбитальным телескопам стала программа «Стратоскоп» (Stratoscope), развитием которой руководил знаменитый астрофизик Мартин Шварцшильд.

Первый телескоп с диаметром главного зеркала 30,5 см, созданный в рамках программы, поднялся в воздух 22 августа 1957 года и достиг высоты 25,3 км.

Там блок приборов начал автоматическую съёмку нашего светила в высоком разрешении, а киноплёнку затем проявили на земле.

Результат эксперимента впечатлил учёных, и программа получила развитие: изучение Солнца и других объектов стратоскопами продолжалось до 1971 года, после чего они уступили место более совершенным инструментам.

Полёт Stratoscope I в сентябре 1957 года

Наблюдатели в космосе

Практическая космонавтика успешно развивалась, и инженеры сделали следующий шаг: начали проектировать орбитальные телескопы.

Американские специалисты разработали серию спутников под названием ОАО (Orbital Astronomical Observatory), которые могли наводиться на любое небесное тело и с высочайшей точностью удерживать его в «поле зрения» приборов.

Спутник ОАО-1, выведенный в космос 8 апреля 1966 года, не смог раскрыть солнечные батареи и начать программу наблюдений.

Зато ОАО-2 (Stargazer), стартовавший в декабре 1968 года, успешно проработал больше четырёх лет. Последний аппарат этой серии, ОАО-3, названный «Коперником» (Copernicus), был запущен в августе 1972 года, а эксплуатировали его девять лет.

Первый спутник Orbital Astronomical Observatory на орбите (концепт-арт)

В составе орбитальной станции Skylab (Sky Laboratory) работала большая многоспектральная обсерватория ATM (Apollo Telescope Mount). С её помощью астронавты опять же изучали Солнце.

Их наблюдения заставили астрономов пересмотреть отношение к нашему светилу: раньше считалось, что это более или менее спокойное небесное тело с однородной гелиосферой, а на самом деле структура его газовой оболочки оказалась сложной и изменчивой.

Кроме того, ATM использовалась для слежения за кометой Когоутека — результаты этих наблюдений помогли подтвердить теорию о том, как именно за пределами Солнечной системы формируются кометы.

Американская орбитальная станция Skylab, снятая со стороны обсерватории ATM (NASA)

Советские учёные обрели возможность вести астрономические наблюдения в космосе с началом эксплуатации станций «Салют».

На «Салюте-1» был установлен ультрафиолетовый телескоп «Орион», разработанный Бюраканской астрофизической обсерваторией.

Космонавты использовали его, чтобы получить спектрограммы Веги и Агены (беты Центавра) — благодаря этому удалось уточнить теоретическую модель фотосферы высокотемпературных звёзд.

Телескоп «Орион-2» отправился в космос на борту корабля «Союз-13» в декабре 1973 года. Экипажу удалось снять около 10 тысяч спектрограмм тусклых или далёких звёзд — с блеском более десятой звёздной величины. На обработку полученной информации потребовалось целое десятилетие: каталог, составленный по данным «Ориона-2», увидел свет только в 1984 году.

Ультрафиолетовый телескоп «Орион»

На «Салюте-4» использовался солнечный телескоп ОСТ, автоматическая система наведения которого оказалась бракованной. Космонавты перешли на ручное управление — почти как в старых фантастических романах.

Кроме того, Алексей Губарев и Георгий Гречко впервые в истории провели операцию по орбитальному ремонту телескопа — 2 февраля 1975 года они напылили на его зеркало алюминий, что значительно улучшило качество изображения.

Следующему экипажу «Салюта-4» 18 июня повезло наблюдать за вспышкой на Солнце и за появлением гигантского протуберанца. «Контрольную» съёмку в видимой части спектра вели сотрудники Крымской астрофизической обсерватории.

На «Салюте-6» и «Салюте-7» тоже устанавливали телескопы: субмиллиметровый БСТ-1М с полутораметровым зеркалом, радиотелескоп КРТ-10, гамма-телескоп «Елена» и рентгеновский телескоп РТ-4М.

В то же время советские учёные научились конструировать независимые от пилотируемых кораблей и станций обсерватории, управляемые с наземных пунктов.

В 1980-х годах они запустили спутники «Астрон», «Гранат» и «Гамма» для исследований в рентгеновском и гамма-диапазонах, а к орбитальному комплексу «Мир» пристыковали астрофизический модуль «Квант» с обсерваторией «Рентген». К сожалению, с распадом СССР многие перспективные отечественные проекты были заморожены.

Зоркий «Хаббл»

Развитие орбитальной астрономии затруднялось из-за несовершенства систем, с помощью которых управляли телескопами, наводили их на объекты и передавали данные на Землю. Зато с появлением современных цифровых технологий появилась возможность создавать космические обсерватории с большим сроком «жизни» и высокой разрешающей способностью.

Самую большую известность среди таких обсерваторий получил американский телескоп «Хаббл» (Hubble Space Telescope), который был доставлен на орбиту 24 апреля 1990 года в грузовом отсеке шаттла «Дискавери».

Имея главное зеркало диаметром 2,4 метра, «Хаббл» оставался самым большим оптическим инструментом в космосе, пока в 2009 году Европейское космическое агентство не запустило туда же инфракрасный телескоп «Гершель» (Herschel Space Observatory) с диаметром зеркала 3,5 метра.

Телескоп «Хаббл» отправляется в самостоятельный полёт (NASA)

История «Хаббла» не обошлась без проблем. Начав работу в космосе, он выдал изображение хуже, чем такой же по размерам наземный телескоп. Причиной искажения стала ошибка, допущенная при изготовлении главного зеркала.

Проект мог полностью провалиться, если бы специалисты, наученные горьким опытом поломок на предыдущих обсерваториях, не предусмотрели возможность ремонта силами астронавтов.

Фирма Kodak быстро изготовила второе зеркало, однако заменить его в космосе было невозможно, и тогда инженеры предложили изготовить космические «очки» — систему оптической коррекции COSTAR из двух особых зеркал.

Чтобы установить её на «Хаббл», 2 декабря 1993 года на орбиту отправился шаттл «Индевор». Астронавты совершили пять сложнейших выходов в открытый космос и вернули дорогостоящий телескоп в строй.

Ремонт телескопа «Хаббл» в космосе (NASA)

Позднее астронавты летали к «Хабблу» ещё четыре раза и значительно продлили срок его эксплуатации. Последнее техобслуживание проходило с 11 по 24 мая 2009 года, в рамках миссии шаттла «Атлантис».

Сегодня телескоп, которому почти тридцать лет, начинает ломаться.

В октябре прошлого года пресс-служба NASA сообщила, что отказал один из гироскопов системы ориентации, из-за чего «Хаббл» на три недели перевели в «безопасный режим» (отключается исследовательское оборудование, работает только служебное).

8 января выключилась широкоугольная камера Wide Field Camera 3; на поиск неисправности и её устранение ушло девять дней. 28 февраля из-за ошибки в программном коде несколько дней не работала многоспектральная камера ACS (Advanced Camera for Surveys). Пока что наземная команда обслуживания справляется с накапливающимися проблемами, но вряд ли телескоп продержится долго.

Применение космических «очков» COSTAR: так выглядела галактика М-100 до ремонта «Хаббла» и после (NASA)

Сейчас планируется, что «Хаббл» будет продолжать работу до 30 июня 2021 года, что и так намного больше его запаса прочности. Потом телескоп попытаются управляемо свести с орбиты и затопить в океане. Впрочем, в настоящее время администрация президента Дональда Трампа рассматривает другой вариант: корпорация Sierra Nevada предлагает отправить к «Хабблу» корабль-ремонтник.

Космический телескоп «Уэбб» (NASA)

С другой стороны, своей очереди давно ждёт большой инфракрасный телескоп «Уэбб» (James Webb Space Telescope) с составным зеркалом диаметром 6,5 метров: его как раз планируют запустить 30 марта 2021 года.

В числе прочих задач он будет искать свет самых древних звёзд и галактик, изучать их эволюцию и формирование скоплений вещества в юной Вселенной. Кроме того, «Уэбб» поможет искать относительно холодные планеты у соседних звёзд — но, самое главное, снимет спектры их атмосфер.

Тогда мы сможем увереннее говорить о царящих там природных условиях, а может быть, даже зафиксируем признаки жизни — биосигнатуры.

Далёкое и близкое

Космический телескоп «Кеплер» (NASA, концепт-арт)

Сегодня раздел астрономии, занимающийся изучением экзопланет, переживает бурный расцвет.

Если раньше массивные твёрдые тела в звёздных системах находили по косвенному признаку — гравитационному влиянию на собственное светило, — то теперь популярнее всего стал транзитный метод, то есть наблюдение за микрозатмениями звезды.

Разумеется, он требует высочайшей точности измерений, и лучший результат получается именно у космических телескопов, поскольку изменение блеска далёких светил сложно различить за колебаниями беспокойной земной атмосферы.

Стандарт в этой области исследований задал американский телескоп «Кеплер» (Kepler Telescope), запущенный 7 марта 2009 года. Он мог наблюдать одновременно до 100 тысяч звёзд, собирая статистические данные по экзопланетам.

За три года работы «Кеплеру» удалось обнаружить 4700 кандидатов в экзопланеты; свыше 2600 из них подтвердились. Многие открытые миры оказались сопоставимы по размерам с Землёй.

Также удалось доказать существование систем сразу с несколькими экзопланетами, в том числе у двойных звёзд.

Нашлись даже землеподобные миры в «зонах обитаемости», то есть на таком расстоянии от звезды, которое удобно для возникновения жизни.

Например, планета Kepler-438b, расположенная от нас на расстоянии 470 световых лет, считается сегодня самой подходящей для возникновения и развития иной жизни.

К сожалению, работа с «Кеплером» сопровождалась техническими сбоями и была прекращена в октябре прошлого года.

Участок неба, который изучал «Кеплер»

В апреле 2018 года компания SpaceX запустила в космос телескоп TESS (Transiting Exoplanet Survey Satellite): в отличие от «Кеплера», нацеленного на дальний космос, он будет искать экзопланеты в радиусе до 200 световых лет от нас. Астрономы предполагают, что TESS откроет как минимум 20 тысяч новых миров, среди которых будет не меньше тысячи землеподобных.

Готовятся к запуску и другие космические инструменты для изучения экзопланет.

В 2019 году на орбиту отправится телескоп «Хеопс» (CHEOPS), в 2026 году — телескоп «Платон» (PLATO), в 2035 году — мощная обсерватория ATLAST (Advanced Technology Large-Aperture Space Telescope).

Работая вместе с наземными инструментами, они смогут определить характеристики ближайших экзопланет — и даже составить карты их поверхности!

Европейский космический телескоп «Гея» (ESA, концепт-арт)

Галактическая астрономия тоже не стоит на месте. В апреле 2018 года европейцы опубликовали предварительные результаты наблюдений телескопа «Гея» (Gaia), запущенного пять лет назад.

На их основе удалось построить детализированную трёхмерную карту Млечного Пути, в которой содержатся сведения о точном расположении, характеристиках и передвижении 1,7 млрд звёзд. Кроме того, «Гея» собрала информацию о 14 тысячах астероидов Солнечной системы.

Телескоп будет передавать данные на Землю, обогащая наши знания о ближнем и дальнем космосе, до конца 2020 года.

На фоне столь эффектных достижений российской орбитальной астрономии пока нечем похвастаться.

Сейчас на орбите находится только телескоп «Радиоастрон» (Спектр-Р), запущенный 18 июля 2011 года: он занимался изучением чёрных дыр, нейтронных звёзд и других объектов, излучающих в электромагнитном спектре.

Хотя гарантийный срок телескопа истёк в 2016 году, до недавнего времени он работал исправно и потерял управляемость только 10 января 2019 года, а данные передаёт до сих пор. Попытки восстановить двустороннюю связь учёные собираются повторять до середины мая.

Российский космический телескоп «Радиоастрон» (Роскосмос, концепт-арт)

Планировалось, что в ближайшие годы к нему присоединятся обсерватории «Спектр-РГ», «Спектр-УФ» и «Спектр-М» («Миллиметрон») с криогенным телескопом диаметром 10 метров, который улавливает излучение в миллиметровом и инфракрасном диапазонах. Работая вместе, три аппарата могли бы составить самую подробную в истории карту внегалактической Вселенной.

Однако в последнее время появляются сообщения, что финансирование двух последних проектов собираются сильно урезать. Хочется надеяться, что это «ложная тревога», потому что в таком случае наша наука останется без современных инструментов по изучению дальнего космоса.

А изучать его необходимо, ведь орбитальные обсерватории XXI века помогают учёным не только по-новому вглядываться в бездны пространства, но и делать более уверенные прогнозы о будущей эволюции космоса, от которых в конечном итоге зависит вопрос выживания всего человечества.

Источник: https://www.mirf.ru/science/istoriya-kosmicheskih-teleskopov

Телескопы: история возникновения и развития

История телескопа
Назад к списку

Телескоп — оптический прибор, позволяющий наблюдать отдаленные объекты. Он имеет особую конструкцию, которая собирает электромагнитное излучение, в результате чего формируется увеличенное изображение небесного тела. 

Предыстория

Кто и когда изобрел телескоп до сих пор точно неизвестно, но предполагается, что это был голландский очковый мастер Иоанн Липперсгей

Именно он впервые в 1607 году в Гааге показал прибор, который больше был похож на современную подзорную трубу, а такое изобретение давно ждали мореплаватели. Только в выдаче патента изобретателю отказали, так как точно такие же приборы уже были у Захария Янсена из Мидделбурга и Якоба Метиуса из Алкмара. 

Задолго до этого изобретения самые первые чертежи были сделаны Леонардо да Винчи еще в 1509 году. Это были простые приборы, похожие на телескопы, с одной и двумя линзами.

Изобретение первого телескопа рефрактора

Полноценный прибор для наблюдения космических объектов был специально изобретен известным ученым Галилео Галилеем в 1609 году. Первый прибор изобретателя имел трехкратное, второй — 8-кратное, а третий — 32-кратное увеличение. При этом, пользуясь такими несовершенными телескопами, Галилео Галилей сделал много важных открытий, связанных с Космосом. В частности, он впервые рассмотрел:

  • горы и кратеры на Луне;
  • звезды Млечного Пути;
  • пятна на Солнце;
  • четыре спутника Юпитера;
  • кольца Сатурна.

Настоящий телескоп получил свое название не сразу. В 1611 году известный математик Иоаннис Димисианос из Греции предложил данный прибор называть телескопом.  

Так началась эра рефрактора в астрономии, открытая Галилео Галилеем.

Изобретение рефлектора Ньютоном

Телескоп постоянно пытались усовершенствовать, но не удавалось изготовить линзы больших размеров. Из-за этого приборы были длинными, неподъемными и с узким полем зрения. К ним в то время смогли только изобрести штативы.

Во второй половине ХVII века Христиан Гюйенс сделал телескоп длиной 7 метров, который увеличивал в 100 раз, при этом апертура была примерно 15 см. Сегодня примерно такой же прибор относят к любительским и рекомендуют начинающим астрономам.

Телескоп не один раз пытались усовершенствовать. К концу ХVII века был собран телескоп длиной 70 метров! Но как им управлять и настраивать его? При этом даже обычный ветер был помехой для наблюдений. Великие умы прилагали все усилия, чтобы улучшить его.

 

Совершенно новое изобретение стало принадлежать Исааку Ньютону. Его прибор позволял собирать и фокусировать лучи с помощью вогнутого зеркала. Таким образом, рефрактор Галилея «превратился» в рефлектор Ньютона. Здесь главной задачей было сделать для прибора зеркало хорошего качества.

Для него Ньютон применил сплав меди, олова и мышьяка, чем улучшил изображение в несколько раз, при этом добился 40-кратного увеличения. Телескоп так понравился королю, что Ньютон сразу стал членом Королевского общества. Это шел 1704 год, а значит, начало ХVIII века стало новой эрой рефлектора Ньютона.

Его самодельный телескоп до сих пор хранится в лондонском музее астрономии. 

Телескопы стали удобнее и компактнее (чаще не более 2 метров в длину), но все равно громоздкими. Но хотя их можно было уже носить и брать с собой, куда угодно.

История развития рефрактора и рефлектора

Телескоп совершенно другого типа разработали в конце ХVIII века. Француз Кассегрен предложил вместо одного зеркала в приборе использовать два.

Но свою идею он не мог воплотить в жизнь, так как на тот момент не было возможности сделать нужные зеркала. Его изобретение реализовали в наше время в мощном телескопе Хаббл.

В нем установлены зеркала, работающие по принципу, который описал Кассегрен. 

К сожалению, рефлекторы оказались дорогими, кроме этого, основные элементы — металлические зеркала — со временем теряли яркость и становились тусклыми. Поэтому телескоп-рефрактор продолжал совершенствоваться.

В 1758 году были изобретены два совершенно новых сорта зеркал: крон и флинт. Их удачно применил Дж. Доллонд в своем телескопе с двухлинзовой системой. Такой прибор впоследствии назвали доллондовым.

Успех рефрактора был однозначным!

Но астрономы-любители не забыли о рефлекторах.

Так, английский музыкант Вильям Гершель собрал собственный телескоп-рефлектор и в 1781 году совершил потрясающее открытие: в космическом пространстве он нашел новую планету — Уран, чем удивил всех.

Такой успех побудил любителя астрономии усовершенствовать телескоп и сделать его большего размера. Им был создан самый большой на то время рефлектор с диаметром зеркала 122 см. В результате были открыты еще 2 спутника Сатурна.

За Гершелем последовал английский лорд Росс, который собрал рефлектор с диаметром зеркала 182 см. Он сразу открыл неизвестные ранее спиральные туманности. Но и эти телескопы были несовершенны: тяжелые, с малым отражением света, а зеркала в них быстро тускнели.                 

Только в 1856 году французский физик Леон Фуко применил зеркало из посеребренного стекла. Этот опыт оказался удачным.

Русские ученые тоже не остались в стороне, они принимали участие в новых изобретениях: Я.В. Брюс разрабатывал металлические зеркала, М.В.Ломоносов (также как и Гершель) работал над новой конструкцией, которая уменьшала бы потери света.

Только в конце ХIХ века стали выпускать линзы со стеклянной поверхностью, обработанной серебром. Такие линзы отражали до 95% светового потока, что стало настоящим прорывом в области телескопостроения. 

Л.Фуко создал рефлектор, применив параболическое зеркало, которое по тем временам было просто громадное 91 см.

В ХХ веке телескопы с огромными зеркалами стали не редкость. Например, прибор с диаметром 256 см установлен в обсерватории Моунт-Вильсон, а гигантский рефлектор с диаметром в 2 раза больше — в Калифорнии.

Телескопы ХХ века

Благодаря открытиям, сделанным в прошлых столетиях, и разработкам ХХ века телескопы вышли на совершенно иной уровень. Они стали давать качественное изображение и точную информацию о космических объектах. Все это сопровождается компьютерным ведением. Вот некоторые из них.

  • В 1976 году советским ученым удалось смонтировать на Северном Кавказе телескоп, который получил название БТА — Большой Телескоп Азимутальный. В нем установлено шестиметровое 42-тонное зеркало. С помощью прибора сделано много важных открытий в области взаимодействия и эволюции Галактик. На тот момент это был единственный гигантский телескоп.
  • Космический телескоп «Хаббл» — орбитальная обсерватория, имеющая все необходимое оборудование для астрономических наблюдений и исследований. Так как земная атмосфера не создает ему помех, снимки, сделанные им в Космосе, являются самыми качественными. Он выведен на орбиту в 1990 году и его планируют заменить после 2020 года.
  • Два самых эффективных телескопа-близнеца KECK 1 и KECK 2 размером с 8-этажный дом установлены в 1993 — 1996 году на горе потухшего вулкана Мануа Кеа. Его угловые разрешения высокой точности позволили открыть экзопланеты и исследовать их.

Современные телескопы

У современных телескопов выросли размеры зеркал, точность изготовления, возросло количество диапазонов длин волн, в которых ведется наблюдение. Обсерватории работают в инфракрасном, ультрафиолетовом, рентгеновском, терагерцовом и других диапазонах. Они оснащены уникальными компьютерными программами, позволяющими накапливать данные и анализировать их.

  • Большой Канарский телескоп-рефлектор установлен в 2007 году на вулкане Мучачос на высоте 2400 метров. Он позволяет изучать наиболее отдаленные объекты в космическом пространстве.
  • В чилийской пустыне Атакама, расположенной на высоте 5100 метров над уровнем моря, где крайне сухой воздух, с 2005 года работает детектор CONDOR. С его помощью Вселенную изучают в терагерцовом диапазоне. 
  • Дорогостоящий комплекс из радиотелескопов, расположенный также в пустыне Атакама в Чили, начал научные наблюдения с 2011 года. С его помощью ученые попытаются воссоздать эволюционные процессы во Вселенной, в том числе зарождение звезд и Галактик. 

Данные телескопы стали настоящим прорывом в изучении Космоса. Они позволяют заглянуть в самые отдаленные уголки Вселенной, разгадать загадки далеких звезд, планет и Галактик.

Какими бы гигантскими ни были современные телескопы, простых любителей астрономии все равно будет интересовать свой личный прибор, поэтому предлагаем заглянуть на страницы нашего сайта и выбрать оптимальный вариант телескопа лично для себя или в подарок близкому человеку!

Назад к списку

Источник: https://veber.ru/item/telescopes-history-and-development/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.